Development of Real-Time Hardware/
Software Systems

J. W. Layland

Communications Systems Research Section

This report presents a concentrated overview of the critical issues and tools
for the development of real-time systems. Real-time systems are defined to be
those which perform their actions in response to stimuli from outside themselves,
and which must respond to these stimuli within fixed, predetermined time limits.
A real-time system with many independent external stimuli almost certainly
contains a large number of interacting asynchronous processes. From the
viewpoint of the equipment surrounding this real-time system, these processes
operate in parallel, and their operations are only partially ordered. A single
process can be well represented by a flow chart which relates step-by-step
exactly which action follows the last one. Multiple interacting asynchronous
processes cannot be conveniently described by a flow chart of their combined
operations, even though when taken individually each process can be depicted
on a flow chart. However, each of the multiple asynchronous processes can be
readily understood as a finite state machine, and the interaction between
machines can be graphically represented by a state-transition net, or *‘Petri-
net.”” This report develops the use of such nets for software and hardware
design through description and example.

l. Introduction

The purpose of this report is to present a concentrated
overview of the critical issues and tools for the develop-
ment of real-time systems. Real-time systems are defined
to be those which perform their actions in response to
stimuli from outside of themselves, and which must
respond to these stimuli within fixed, predetermined time

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

limits. Typically there are many independent stimuli
which require a response. Each stimulus causes the
activation of, or creation of, at least one process within
the system, which in turn will develop the responses
required by the source of the stimulation. In software
terminology, a process is a sequence of operations which
is fully ordered, and has a well-defined start and end. A
real-time system with many independent external stimuli

57

almost certainly contains a large number of interacting
asynchronous processes. From the viewpoint of the
equipment surrounding this real-time system, these
processes operate in parallel, and their operations are only
partially ordered.

A single process can be well represented by a flow chart
which relates step-by-step exactly which action follows
the last one. Multiple interacting asynchronous processes
cannot be conveniently described by a flow chart of their
combined operations, even though when taken individu-
ally each process can be depicted on a flow chart. The
early conceptual developments (Ref. 1) which engendered
the current raging fad of structured programming were
aimed primarily at the taming of the complexities of
software containing asynchronous processes. The more
recent, more formalized development of structured
programming (Refs. 2, 3) has emphasized the decomposi-
tion of single-process flow charts over the less tractable
real-time problems. This report is one step of an attempt
to bridge the gap between the underlying principles of
structured programming and the problems of developing a
working real-time system.

The act of solving a complex problem, or designing a
complex system can be characterized as a hiding of locally
irrelevant details, so that those details which are relevant
to the locale of interest can be properly studied and
interpreted. A significant fraction of such improvements as
have been observed with structured programming may
well be attributable to such hiding of detail as is induced,
instead of to the rigorous application of the restricted
control structures themselves.

In Part II we present some views on the process of
solving complex problems or designing complex systems.
Part III considers the problem of choosing a language for
the description and/or implementation of real-time
software. Part IV presents assorted advice on the
implementation of real-time systems. Some large portion
of Part IV consists of quasi-obvious common sense, yet it
is this collection of obvious things that taken together
represents the bulk of the increment in difficuity between
nonreal-time and real-time systems.

Part V is an introduction to the syntax of the Petri net
(Ref. 4), or state-transition net. Such nets describe the
partial ordering of events within a finite-state machine,
and as such can be well used to represent the interactions
of the asynchronous processes in a real-time system. Part
VI makes use of the transition nets to describe the
behavior of a suitably substantial synthetic example
system. This description includes both processes which are

58

totally software and processes which operate both in
hardware and software. Part VII and subsequent discus-
sions contain additional examples of processes which are
represented by transition nets, and also contain examples
of the mechanization of transition nets as both software
and hardware. They will be written in the future as
additional experience is gained through the use of this
system description tool.

Il. On Problem Solving and System Design

Design problems, whether they are destined to be
executed as computer software, logical hardware, or as
some entirely unrelated material come in two varieties.
They are either small enough that their entire character
fits inside the problem-solver’s head as a single chunk, or
they are not. An example of a thing which is single-chunk
could be “a transparent green glass marble.” An example
of a thing which is not single chunk could be “a thousand
marbles rolling down a giant slide.” The features which
make this second example not a single chunk for most of
us are that it contains a large number of identifiable things
and that these things move in a quasi-independent way.

Differentiation between those things which are compre-
hensible as a single chunk, and those things which are not
is subjective, and varies from person to person on the basis
of training, experience, desire, mental capacity, etc.
Single-chunk problems can be solved or implemented in
an almost random fashion without undue difficulties.
Larger problems must be either laboriously studied until
they resemble single chunk problems (if this is possible),
or dissected into smaller problems which are single chunk
in nature, and which taken together solve the original
problem. In order to make the subproblems single chunk
when the original one was not, some information or design
detail that is present in the problem as a whole must be
hidden from the subproblem. Contrarily, each of the
subproblems should contain detail that is hidden from the
others. It is this systematic selective hiding of design
details which makes solution of the larger problems
possible. This problem-solving philosophy is similar to one
which has been voiced by Parnas (Refs. 5, 6).

The design rules and restricted control structures of
structured programming are intended to guide the
dissection of a problem into subproblems which are single-
chunk in nature, not only for the designer, but also for his
managers, and for any future casual readers. The oft-
quoted structure theorems (Ref. 2) tell us that we can
reorganize any flow chart using only three control
structures, no matter how complex it may appear. Flow
charts, however, are single-process in nature and cannot

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

completely and/or conveniently represent all features of a
multiprocess operation. Small details, like timing con-
straints or conflicts, don’t fit and are left for prose
commentary, or worse, are left to clutter the designer’s
head while he works on each of the pieces, because these
details are not hidden from any of them. Because these
most troublesome details of real-time software do not fit a
flow-chart representation, the ritual of structured pro-
gramming as it is conventionally preached cannot solve
the real-time software designer’s biggest problems,
although it can assist him in handling those pieces of his
problem which can be isolated as single processes.

We should remember, however, that some of the
earliest work in the realm of structured programming was
aimed directly at the methodical design of a system
containing multiple asynchronous processes (Ref. 1). That
these early efforts were successful is evidence that the
principles which underly structured programming can be
used to great advantage in real-time systems, even if some
large part of the recently formalized superstructure
cannot.

. Programming Languages for Design and
Implementation

We can segment the design of a system into two
primary tasks. The first is to fully describe the actions of
the system in its response to the external stimuli, be they
human or electromechanical in origin. The second is to
implement those actions within the available hardware/
software resources. Again, we are hiding details, by
considering first what is to be done, and then, separately,
how it is to be accomplished. Actual development almost
always requires an iteration between these two phases,
because some of the actions which appear to be needed
may be impossible to implement, or simply expensive,
whereas some actions which are close in some sense to the
needed action might be very much simpler to implement.
The alternate actions could not be known to be acceptable
without considering the overall response demands of the
world outside the system being designed.

With some problems, and an appropriate programming
language, a complete description of that problem can also
be the implementation of its solution. The ease with
which any task can-be performed via a specific program-
ming language actually seems to depend upon the extent
to which that language is able to describe the problem to
be solved, as opposed to implementing the solution to that
problem. A near-classical example here is any numerical

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

formula calculation, and one of the popular FORmula
TRANGlation languages. Such languages intrinsically hide a
great quantity of implementation detail from the problem
solver; and therein lies the power of the higher level
languages (HLL) with respect to their proper domain.
Outside of that domain, however, any specific higher level
language may be no better than a machine assembly
language (MAL), and may, in fact, be much poorer if the
operations required to implement the required problem
solution cannot easily be synthesized from the repertoire
of that higher level language.

The power of a language with respect to a particular
problem may be measured by the number of statements
within that language which are required to implement the
solution to that problem. For largely algebraic problems, a
single FORTRAN statement may contain the equivalent of
many tens of machine-assembly language instructions. On
the other hand, to complement a bit in a data-structure
may require ten FORTRAN statements and only two or
three MAL statements. Both language classes would
implement the operation, rather than describe it, and both
would be machine-dependent in nature. Some other types
of operations would require a comparable number of
statements in either the MAL, or an HLL; some of these
would be machine-dependent by the nature of the data
structures involved, and in none of these would the
implementation details be hidden from the designer. Thus,
only in very special circumstances does any programming
language hide enough details to be appropriate for
describing the system design.

For most problems there is no uniformly most powerful
language, and the choice of an implementation language
(or languages) must be made on other considerations.
Standardization upon a major HLL is one apparently
reasonable way. However, using an HLL to implement
operations for which it is poorly suited may require the
implementer to know details of the implementation of the
HLL itself, thereby greatly increasing the difficulty of his
task. In these situations, the HLL has hidden the wrong
machine details from the designer; the HLL is nontrans-
parent to some specifically important elements of the
machine’s hardware capability.

A mixed arsenal of an algebraic HLL, used where
appropriate, and the target computer’s MAL can combine
the best features of both. The MACRO capability that is
present with many MALs, or a machine-independent
MACRO preprocessor (Refs. 7, 8) can be used to locally
extend the power of the MAL with respect to the
problem at hand. It may, in fact, be quite desirable to use

59

MACRO:s to implement the restricted control structures of
structured programming within the MAL and HLL, and

maintain commonality between control statements of
both.

Although most specific major HLLLs seem presently to
be a poor choice for the sole implementation language of
a real-time system, the HLLs as a class are not yet ruled
out. Several attempts have been made, usually in a
university environment, to define an HLL specifically for
the implementation of real-time, or systems software.
None of these have as yet achieved widespread accept-
ance outside of their native centers, yet the achievements
that are claimed are positive enough to warrant their
serious consideration. BLISS (Ref. 9) is one such language,
which was designed originally for the PDP-10, and has
since been adapted for the PDP-11 minicomputer. BLISS
is ALGOL-like in structure, yet was designed to require
negligible software support at execution time and to allow
the program designer great flexibility in the accessing of
data. Because the method for accessing various data
elements is specified as the data is declared, BLISS
programs are not machine-independent, but can appar-
ently be readily modified to transport them between
machines. Two other relevant efforts are BCPL (Ref. 10),
and the Graphical Automatic Programming system (Ref.
11), which is almost a language.

Graphical representations have been used for many
years in the design of software systems. Simple flow charts
are widely accepted as software documentation and
software design documentation. The syntax of a program-
ming language and the operations required to interpret it
have been graphically represented in the form of a finite
state machine (FSM) (Ref. 12). Similar FSM representa-
tions have been used to describe the interactions between
a user and a computer operating system, and to design
communications-handling software for a time-sharing
operating system (Refs. 13, 14). The multiple asynchronous
processes of a real-time system can each be understood as
an FSM which interacts with the periphery equipment
and with the other FSMs as it acts to produce the required
responses. These interactions, and the partial ordering of
actions of the FSMs, can be well represented graphically,
even though not by the conventional flow chart.

One particular graphical FSM representation known as
the Petri net (Refs. 4, 15), or state-transition net was
developed to deal with asynchronous interactions between
FSMs, and contains the operations necessary to describe
the partial ordering of events, and the timing interactions
of asynchronous software processes, as well as within
hardware realizations of an FSM, or at the hardware/

software interface. The syntax of the transition net
representation is defined in Section V.

IV. Implementation of Real-Time Software

Three characteristics are desired for real-time software,
that it: is consistent, is reasonably efficient, and meets
appointed deadlines of execution. One of the last things a
designer wishes to have is for the results of computation
to vary from time to time, with no apparent change in
input parameters and conditions. For a nonreal-time
single-process computation, this can be assured by
ensuring that all parameters and variables that are used by
that process are preset to their proper initial condition at
the start of the process. This requirement is obvious, yet it
is one source of occasional errors. It is also obvious that all
data used as input to a process must be valid when that
process starts executing and not changed by another
process until the using process has terminated. However,
failure to satisfy this requirement is probably the most
common error encountered in real-time systems. The
problem is basically one of communication between, and
synchronization of, intrinsically asynchronous processes. It
appears as a race between events in logical hardware, as
well as intermittent software errors.

Stimuli from the world surrounding our computer
almost always appear as a logic signal at the interrupt
portion of the computer’s hardware at some particular
point in time. In due course, the computer will respond to
this interrupt signal by saving a small amount of
information (the current instruction address, and perhaps
some additional status) in a predetermined location in
memory, and obtaining a new current instruction address
for the interrupt subroutine associated with this signal.
The computer interrupt hardware will also prevent a
recurrence of this interrupt response until commanded
otherwise. The next instruction executed will be the first
instruction of the interrupt subroutine. The first opportu-
nity for inconsistency is here. If all resources within the
computer which are needed to service the equipment
which initiated the stimulus have been saved by the
computer’s automatic response, we are free to service that
equipment. If a resource is needed which has not been
saved automatically, its current status must be temporarily
saved before the resource is used within the interrupt
subroutine, and then restored to its original condition after
use and before returning to the process which was
interrupted; the penalty for not doing so is lack of
consistency in the interrupted process. Examples of
resources whose state must be saved if they are to be used
include hardware registers, arithmetic status bits, and

JPL DEEP SPACE NETWORK PROGRESS REPORT 42.-28

software registers which contain intermediate temporary
results for subroutines called.

In the interest of efficiency, however, it is unwise to
save and restore any resources which are not needed to
service the requesting equipment, since these operations,
while necessary for consistency on the resources used,
represent a nonproductive overhead with respect to actual
tasks. A strong case can be made for using a minimal MAL
subroutine for at least the most frequent interrupts. By
doing so, the resources needed can be made visible and
controlled, thus restraining unnecessary overhead. Services
requested by equipment with an interrupt signal can often
be categorized with respect to the time available to
perform them. Some must be performed immediately—
otherwise there is no real excuse for generating the
interrupt at all. Others could be deferred to another
slower software process by buffering several requests
together. Deferrable services for which no additional
overhead is generated to allow them to be performed
within the interrupt subroutine may as well be performed
there. Deferrable services which would require additional
overhead should be deferred if by doing so the overhead
dictated by consistency requirements would be lessened.

Some simplification of process interfaces and concomi-
tant reduction of overhead can often be achieved by
anticipating the more complex parts of the required
responses, and precomputing these when it is convenient
to do so. These precomputed results can then be delivered
via a ““mailbox™* to the using process when needed, or via
a much-simplified interrupt-driven process to the external
system hardware. In the implementation of software,
results which are precomputed for the interrupt routines
can vary greatly in character and extent. Their single
common feature, and the feature which they share in
common with deferred computations, is that they have
been removed from the most time-critical of their possible
points of action to a domain of (hopefully) lessened time
criticality.

The second major category of consistency failures
occurs at the interface between our interrupt subroutine
and the software processes that perform those services
that were deferred. This is the interface between
cooperating sequential processes to which the synchroniz-
ing primitives of Dijkstra (Ref. 16) and the considerable
following literature apply. The essential element for
consistency here is that during no interval of time should
more than one process be empowered to change the same
location of memory. Areas into which a given process may
store data should be privately owned by that process while
it is empowered to store that data, and then deliver intact

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

to whatever process will use that data. Semaphores are
used for communication between processes, just as the
interrupt signals were used for communication from the
hardware to the software processes. Whether the
manipulation of these semaphores is performed by
synchronization primitives (Refs. 16, 17) or is imple-
mented directly via increment/decrement and test
instructions, they must, for the moment of their change,
be made private to the process which is changing them.

The avoidance of deadlock dominates much of the
literature on multiple process computation. A deadlock is
said to exist between two or more quasi-independent
processes whenever all of them possess at least a part of
the resources they need for completion, none of them
possess all of the resources they need for completion, and
none of them are willing and/or able to release those
resources to allow another process to complete. In a
committed real-time system, deadlocks should not only be
avoided, but they should be designed out. Any process
should possess all of the resources it needs to allow it to
complete its activity before it becomes active—with NO
exceptions.

Determining whether the appointed execution deadlines
are all satisfied can only be done with certainty after
implementation is complete. This is accomplished by
means of a Ganttchart (Ref. 18) or time-occupancy
diagram for all of the processes with deadlines through
their critical time interval (Ref. 19). If reasonably large
margins are included, a high confidence in meeting
deadlines can be achieved by using estimates of process
execution time once enough of the overall design is
completed. If deadlines are not to be met, some revision is
needed, which could be as simple as increasing efficiency
by reorganization of processes to reduce overhead, or as
involved as renegotiating system requirements, or acquir-
ing a new computer. For a real-time system, the side
effects from deadline problems can be minimized by
designing and implementing first the processes that service
the highest frequency and most time-critical interrupts,
and then proceeding into the more mundane parts of the
system.

V. The Petri-Net Representations

As observed earlier, it is convenient for the designer of
a real-time system to conceptualize his system as an
ensemble of finite state machines (FSMs) which operate on
command and work together to produce the intended
system responses, much as the musicians of an orchestra
follow their own score yet interact time-wise to reproduce
the effects intended. Each of the designcr's FSMs needs

61

only to be concerned with what it is required to do to
service the needs of the periphery equipment. Each of the
FSMs assumes certain states as a result of interactions with
the periphery equipment or with certain others of the
FSMs; the future action of each FSM is governed by its
current state and future inputs. The system designer needs
a representation for the FSMs that can fully describe what
they do in an unambiguous, concise way. This designer’s
representation must also be lucid enough to permit a
system implementer to add such additional interactions as
may be needed to integrate the FSMs together into one
computer, to allocate the FSMs between several comput-
ers and supporting hardware, or to inform the designer
that his dream can’t be realized within the budget.

The FSM representation known currently as the Petri-
net was introduced by Dr. C. A. Petri in 1962 to deal with
the communication between automata (Ref. 4). It bears a
significant generic relationship to earlier graphical
network representations for FSMs; for example the Neural
Networks of McCulloch and Pitts (Ref. 20). Petri nets
currently form the core of a slowly growing literature
concerning the analysis and exploitation of parallelism in
computing hardware or software (Refs. 15, 21-30). The
components of the original Petri net have the same basic
appeal for representation of FSMs that the basic three
structures of structured programming do for single-process
computations: their syntax is exceedingly simple, yet is
capable of concisely describing the interaction between
cooperating sequential processes.

Formally, a Petri net is a directed graph with two types
of nodes. Nodes represented as open circles are called
locations. Nodes represented as solid bars are called
transitions. Figure 1 is an example of a trivial transition
net. A location is denoted to be occupied by placing a
token, a solid dot, within that location, as in location B of
Fig. 1. If the entire net is to be considered as one finite
state machine, that machine’s state is fully defined by a list
of the occupied locations. Tokens move about the net
under control of the transitions. A transition is enabled to
fire whenever all locations which are on lines of the graph
directed into that transition are occupied, and all of the
locations which are on lines of the graph directed from
that transition are empty. When a transition fires, the
tokens_ are removed from all locations which lead into that
transition, and tokens are placed in all locations which are
fed from that transition. The firing of a transition is
instantaneous. In Fig. 1, transition a is a source of tokens,
and will supply a token to location A whenever A is
empty. Transition d is a drain for tokens and will remove a
token from location D whenever D is occupied.

62

In the current state of Fig. 1, only transition a is
enabled. After a has fired, location A is occupied, and a is
no longer enabled, but b is. After b has fired, C is
occupied and c is enabled. Since A is now empty, a is also
again enabled. After c and a have fired, locations B, D, and
A are occupied, and transitions b and d are enabled. An
oscillatory activity now ensues with transitions d and b
firing to cause locations A, B, and D to empty and location
C to be occupied; followed instantly by the firing of
transitions ¢ and a. The net result is a steady migration of
tokens from a to d in synchronism with the oscillation
between B and C.

In representing a software activity, it is convenient to
consider the tokens within a net as independent asynchro-
nous processes. The location which each process (token)
occupies then represents the state of that process. The
transitions through which the processes must pass
represent points of interaction between processes which
ensure proper synchronism between the processes. In
parallel process terminology, transition ¢ of Fig. 1 is a
FORK operation from a single process in location C to
two (now independent) processes in locations B and D.
Transition b of Fig. 1 is a JOIN operation wherein two
independent processes at locations A and B are merged
into a single process at location C. Although time does not
exist explicitly within a transition net, many of the
processes which we wish to represent are time-consuming
in their data operations, exclusive of the interprocess
interactions. This form of time consumption can be
embedded within the transition net representation by
stretching the change from a location being empty to that
location being occupied to include that time. We should
view a location as being half occupied, or perhaps,
undefined, during this time interval, as no further
interactions with other processes appearing explicitly in
the net are possible until this time-consuming activity is
completed. Upon closer examination, this time-consuming
activity which we represent as being within a specific
location (process state) may itself be further decomposed
as multiple asynchronous processes, or may be a single
process which is representable by a conventional flow-
chart.

The example of Fig. 1 contains nodes with only 0, 1, or
2 inputs and 0, 1, or 2 outputs. The actual number of
inputs and outputs is immaterial and can be arbitrarily
increased as long as operation of the transitions follows the
conventions previously described. However, since clarity
of representation is a principal goal, it is wise to restrict
the number of inputs and outputs of any node to as small a
number as can completely represent the machine
operation, preferably 4 or less.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

Figure 2 shows two transitions with inputs from
locations that do not fit within the basic operation of
transitions as previously described. The open circle input
is called an enabling input, and the solid circle is called an
inhibiting input. A transition with an enabling input
behaves identically to a transition with only normal inputs
except that when that transition fires, the token which
occupied the location which provided the enabling input
is not removed, but remains to enable further firing of the
transition. An inhibiting input is the converse of the
enabling input, in that a transition which has an inhibiting
input may not fire as long as that location which provides
the inhibiting input is occupied. Both enabling and
inhibiting input connections will be used in the examples
which follow.

VI. An Example

Previous sections have described the syntax of transition
nets in a simple manner which may make the nets appear
to be at be:st an interesting toy with which to describe
concurrency which is already under control. The more
substantive examples of this section are intended to show
that the nets are not only interesting, but are a useful tool
as well. We have used transition nets to date in the design
of several segments of intercomputer communication
software (Ref. 31), producing nets of varying complexity,
from some almost as simple as the example Fig. 1, to some
which became unpleasantly cumbersome when all neces-
sary detail was forced into view. As a graphical display of
concurrent activity, the transition net provides a skeleton
within which relevant questions are easily viewed.
Answering these questions remains the designer’s problem,
as a good representation scheme does not automatically
design a system, but induces a careful consideration of all
pertinent aspects of the design. It should become evident
in the following discussion that some amount of prose
commentary is also needed by the designers to relate the
featureless tokens of the transition net to the physical
resources and processes of the system being designed.

Suppose we wish to design a system to perform real-
time Fourier Analysis on a continuous analog waveform.
Waveform parameters specify for us the rate at which the
input data arrives, and the number of input data elements
which must be collected together to allow calculations to
begin. Because the input data arrives nonstop, a second
collection of data will be being received while the first
collection is being analyzed. Likewise, the results of the
analysis of the first collection of data may be being output
to some recipient device while the second collection is
being analyzed, and while a third collection is being input.
We have a feasibility constraint in that the analysis of the

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

first collection of data must be complete when or before
the input of the second collection is complete, and that
output of the first collection of data must be complete
when or before the input of the third collection is
completed. If one or the other of these feasibility
constraints is not satisfied, the processing of data will lag
behind the influx of new data to be processed and cause
eventual loss of that data, no matter what other actions
are taken to avoid such loss.

Figure 3 is a transition net description of the processes
which operate within this system. Within this net, tokens
represent both processes, as before, and resources (buffer
spaces) which initially occupy locations Q;, Qy, and Q3. At
the level of detail presented in Fig. 3, the processes each
have two states, idle (In) and active (An). These three
processes correspond to the three major actions required
of our system: input (data), transform (data to results), and
publish (results); all three are initially idle. Operation of
the net begins when a token is placed in the enabling
location E, and ceases gracefully when this token is
removed, presumably by some higher level process,
human operator, or other. It may be worthy of note that
at the level of detail shown in Fig. 3, we no longer need to
know that the data transformation is a Fourier analysis; it
could be any buffered data transformation.

The three active-state location for the three processes
are each time-consuming, and hence can be further
decomposed, either by single-process flow chart, or by
expansion as transition nets with greater detail. The three
idle-state locations are each simple and not time-
consuming. In presenting Fig. 3 we have assumed that this
transition net both restates the physical realizability
constraints stated above and describes the actions of a
system which conforms to these constraints. The skeptical
or confused reader may find it desirable to sequence
through the operation of the net in Fig. 3, using the
transition behavior rules given earlier, and verify that it
performs as advertised.

We can view Fig. 3 either from its manipulation of the
resources (buffers), or from the actions of the processes.
The buffers enter active location A} where they are filled
with raw data. They travel briefly through queuing cell Q,
into location Ay where the data they carry is transformed.
They travel briefly through queuing cell Qs into location
Aj where they are emptied of data, and are then returned
to the queuing cells Q3-Qy-Q; for reuse. The three
processes represent an assembly line which works upon a
three-bucket conveyor system. Process 1, the input
process, takes empty buffers from Q,, fills them, and
places the filled buffer in Q,. Process 2, the transform

63

process, takes filled buffers from Q,, operates on them, and
places them in Qs after transforming. Process 3 takes filled
buffers from Qs, empties them, and returns the emptied
buffer to Q;>Q,—>Q;. Interface between the processes is
along near-minimum lines.

Active-state location Aj contains within it the interac-
tion with an asynchronous external device—the device
upon which the transformed data is to be written—and
should be instructive to decompose further. One feasible
decomposition appears as Fig. 4. The initial state of this
process is as shown. Upon activation, since we are doing
output from the computer, the buffer is segmented into
primitive units of accessibility (words) and saved in the
queuing locations WQ,... WQ,. The process itself appears
in location BSY which enables the setting of interface
location (logic signal) STC. This transfers process initiative
to the device which should respond by setting interface
signal RSP. Since BQ; is nonoccupied while WQ, is
occupied, the word in WQ, is transferred into the byte
storage locations BQ,, BQ,, and BQs;. The byte in BQ; is
then transferred along with process initiative to the device
via interface signal RDY. The device is expected at this
point to return process initiative via RSP, and will have
the process initiative returned to it via RDY. The signal
STC has remained throughout this activity, so the four-
phase cycle at the interface can begin again. The bytes
remaining in BQ,, and BQ; are transferred to the device
with process initiative via signal RDY each time initiative
is returned via signal RSP. If BQj; is unoccupied when the
process initiative returns, a word is fetched from WQ,
into BQ;, BQ,, and BQ; If both BQ; and WQ, are
unoccupied when process initiative returns, the entire
buffer has been written and the process activity ceases.

The active process described in the paragraph above
still has a large number of open options for implementa-
tion. The interface to the device has been fixed by design,
but the interface between hardware and software has not.
Those readers who are familiar with the Deep Space
Network standard 14-line interface (Ref. 32) will probably
recognize from the signal names that Fig. 4 represents the
data output mode of the 14-line standard interface adapter

(SIA). A full SIA description is possible and will be
generated in the future. There are at least three feasible
places, which have been used in various SIA implementa-
tion, for the hardware/software interface to appear in Fig.
4: (A) at the device interface, (B) on the word-transfer
path between WQ, and the BQs, and (C) on the buffer-
transfer path into the WQ,’s.

The main point of this discussion is that the active
process description in Fig. 4 is complete from a functional
design standpoint and works equally well in the descrip-
tion of hardware machine actions as in describing software
actions that are best represented as finite state machines.

VIl. Concluding Remarks

We have aired in this article a design concept for real-
time hardware/software systems and a representation with
which to describe the timing interactions of a real-time
system. The design viewpoint is one of interacting finite-
state machines, each performing its particular functions
when resources and other enabling conditions permit. The
representation is the Petri net, or state transition net. The
article opens with a general discussion of real-time system
design, and design rationale; then proceeds to define the
transition nets and use them in an example to describe
both hardware and software actions.

Although very simple, the transition net representation
described herein is complete enough to aid in the
development of real-time software, and it appears also to
be adequate for performing resource allocation analyses
for systems of asynchronous processes. As described here,
the representation is not stand-alone but requires the
addition of prose commentary to relate features of the real
system to their manifestation in the transition net. The
references contain some generalizations of transition nets
which attempt to be stand-alone representations. We
should, in the future, evaluate how successful these
attempts have been. There is also a strong temptation to
enrich the syntax of the representation. Such enrichment
is at least in part self-defeating, since a syntactically rich
representation scheme adds its own complexity to that of
any system being represented.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

10.

11.

12.

13.

14.

15.

16,

17.

References

. Dijkstra, E.W., “The Structure of THE Multiprogramming System,” Comm. of

the ACM, May 1968, pp. 341-356.

Mills, H.D., “Mathematical Foundations for Structured Programming,” IBM
Document FSC72-6012, Federal Systems Div.,, IBM, Gaithersburg, Md,
February 1972.

Tausworthe, R.C., “Standardized Development of Computer Software,” to be
published.

Petri, C.A., “Kommunikation mit Automaten,” Bonn, Germany, 1962. English
translation available as Supplement 1 to Rome Air Development Center, TR-
65-377, January 1966 (AD630125).

Parnas, D.L., “On the Criteria to Be Used in Decomposing Programs Into
Modules,” Comm. of the ACM, December 1972, pp. 1053-1058.

Parnas, D.L., “A Technique for the Specification of Software Modules, With
Examples,” Comm. ACM, May 1972.

Waite, W.M,, “A Language Independent Macro Processor,” Comm. ACM, July
1967, pp. 433-440.

Waite, W.M., “The Mobile Programming System: STAGE2,” Comm. ACM,
July 1970, pp. 415-421.

Wulf, W.A,, et al., “BLISS, A Language for Systems Programming,” Comm.
ACM, December 1971, pp. 780-790.

Richards, M., “BCPL, A Tool for Compiler Writing and Systems Program-
ming,” in AFIPS Conference Proceedings, Spring Joint Computer Conference
1969.

Kossiakoff, A., and Sleight, T.P., “A Programming Language for Real Time
Systems,” AFIPS Conference Proceedings, Fall Joint Computer Conference
1972, pp. 923-942.

Resnick, M., and Sable, J., “INSCAN, A Syntax Directed Language Processor,”
Proceedings of ACM 23rd National Conference 1968, pp. 423-432.

Birke, D.M., “State Transition Programming Techniques and Their Use in
Producing Teleprocessing Device Control Programs,” Second Symposium on
Problems in the Optimization of Data Communication Systems, October 1971,
pp- 21-31.

Bjorner, D., “Finite State Automaton — Definition of Data Communication
Line Control Procedures,” AFIPS Conference Proceedings, Fall Joint
Computer Conference 1970, pp. 477-491.

Holt, Anatol, et al., Final Report on the Information Systems Theory Project,
RADC-TR-68-305, Rome Air Development Center, New York, 1968.

Dijkstra, E.W., “Cooperating Sequential Processes,” Study Notes From
Techniche Hogschule Eindhoven, 1965. Reprinted in Programming Lan-
guages, F. Genuys (Ed.) Academic Press, New York, 1968.

Hansen, P.B., Operating Systems Principles, Prentice-Hall, Inc., New York,
1973.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

65

66

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Manacher, G.K., “Production and Stabilization of Real-Time Task Schedules,”
Journal ACM, July 1967, pp. 439-465.

Liu, C.L., and Layland,] W., “Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment,” Journal ACM, January 1973, pp. 46-61.

McCulloch, W.A,, and Pitts, W., “A Logical Calculus of the Ideas Immanent in
Nervous Activity,” Bulletin of Mathematical Biophysics 5 (1943), pp. 115-
133; also Minsky, M., Computation: Finite and Infinite Machines, Chapter 3,
Prentice Hall, Inc., New York, 1967.

Baer, J.L., “Models for the Design, Simulation, and Performance of
Distributed-Function Architecture, Computer (March 1974), pp. 25-30.

Rose, C.W., “LOGOS and the Software Engineer,” AFIPS Conference
Proceedings, Fall Joint Computer Conference 1972, pp. 311-323.

Glaser, E.L., “Introduction and Overview of the LOGOS Project,” COMPCON
72 Digest, pp. 175-178, 191-192.

Heath, F.G,, and Rose, C.W., “The Case for Integrated Hardware/Software
Design,” COMPCON 72 Digest, pp. 179-182.

Bradshaw, F.T., “Some Structural Ideas for Computer Systems,” COMPCON 72
Digest, pp. 183-186.

Rose, C.W., Bradshaw, F.T., and Katzke, S.W., “The LOGOS Representation
System,” COMPCON 72 Digest, pp. 187-190.

Patil, S., and Dennis, J.B., “The Description and Realization of Digital
Systems,” COMPCON 72 Digest, pp. 223-227.

Nutt, G.J., “Evaluation Nets for Computer Systems Performance Analysis,”
AFIPS Conference Proceedings of the Fall Joint Computer Conference 1972,
pp- 279-286.

Noe, J.D., and Nutt, G.J., “Macro E-Nets for Representation of Parallel
Systems,” IEEE Transactions on Computers, August 1973, pp. 718-727.

Misunas, D., “Petri Nets and Speed Independent Design,” Comm. ACM,
August 1973, pp. 474-481.

Layland, J.W., “Software for Multicomputer Communications,” in The Deep
Space Network Progress Report 42-26, pp. 145-154.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

Fig. 1. Trivial transition net example ENABLING INHIBITING
CONNECTION CONNECTION

Fig. 2. Special transition—connections

TRANSFORM PUBLISH

A A

2 3

Fig. 3. Example system

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

67

START

) I

WQ

DEVICE

RF
EINISH INTE| ACE
1
L——— STC
]
RSP
]
BQ, »{ RDY
|
BQ,
|
RSP

Fig. 4. Expanded net for active output process (A3)

68 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-28

